- Новости Австрии
-
ARBÖ предупреждает об опасности дешевых шин
12.10.2025
Верхняя Австрия: Операция спецназа Cobra в Форхдорфе
12.10.2025
Бургенланд: Производитель вина «Uhudler» на подъеме
12.10.2025
Faber-Castell закрывает завод в Верхней Австрии
11.10.2025
Полиция предупреждает об угонщиках велосипедов
11.10.2025
Верхняя Австрия: Все больше и больше автомобилей
11.10.2025
Венская ярмарка «Edelstoff» с дизайном и мастерством
11.10.2025
15 000 бегунов ожидаются на Боденском озере
11.10.2025
Вена: Экстрадиция Димы Фирташа маловероятна
10.10.2025
Зальцбург повышает плату за спортивные залы
10.10.2025
- Рекомендуем
- Рекомендуем
В Австрии осуществили "необратимые" квантовые вычисления
Опубликовано: 16.03.2005
“Необратимые” квантовые вычисления удалось впервые осуществить австрийским ученым. Антон Цайлингер (Anton Zeilinger) и его сотрудники из венского Института экспериментальной физики использовали для этого так называемые “запутанные состояния” фотонов. Результаты эксперимента, опубликованные в журнале Nature, неизбежно повлияют на современные представления о практической разрешимости ряда важных проблем теории чисел и криптографии.
Квантовые компьютеры основаны на качественно иной логике, чем современные классические. Принципы действия последних описываются булевой алгеброй, и любому состоянию вычислительной машины отвечает некоторая последовательность битов. Единицей квантовой информации является q-бит – состояние двухуровневой квантовой системы. В вычислениях существенно используются квантовые явления – суперпозиция и “запутывание” (entanglement) состояний, так что N q-битам отвечает 2N-мерное пространство, базисные векторы которого – последовательности “q-нулей” и “q-единиц”.
Если “измерить” состояние квантовой системы “до” и “после”, мы получим результат вычисления, которое в математической модели описывает соответствующий физический процесс. Это соображение встречается в работах Фейнмана, а в 1980 году советский алгебраист Манин сформулировал на его основе концепцию квантовых вычислений. Постановка вопроса была непривычной для математиков: требовалось “приспособить” задачу к некоторой системе, могущей ее решить.
Задач, для которых уже придуманы квантовые алгоритмы, сравнительно немного. Среди них, однако – проблема разложения на простые множители, исключительно важная для теории чисел и криптоанализа. Многие алгоритмы шифрования, криптостойкость которых с точки зрения классических вычислений не вызывает сомнений, взламываются посредством квантового компьютера.
Попытки воплотить q-бит в конкретных физических системах предпринимались с 1980-х годов. Эффективных квантовых компьютеров на основе сверхпроводимости или ядерного магнитного резонанса так и не удалось построить.